Last week I was in Redmond for the Microsoft MVP 2016 Summit. At the same time, the ISO C++ committee was having its fall meeting in Issaquah, which is very close to Redmond. Therefore, after the summit ended, a group of VC++ MVPs, including myself, decided to make the short trip to Issaquah and attend as observers the meetings, that are actually opened for the public. It was a very interesting experience and I am glad that I had the opportunity to take it.

The committee is organized in several working groups (WG) and study groups (SG). You can actually read all about that here. These groups have separate meetings as they are focussed on different things. I have attended a meeting of the Evolution Working Group (aka EWG), as, at that point, it looked like the most interesting of them all. These meetings actually took place in the same location where the final version of C++14 was voted.

Apart from the topics that have been discussed, which I will not elaborate on here, even though they were interesting and important, it was rather the way the committee is working that it was of most interest to me. I always had the impression that discussions were held in the fashion of the debates in the British Parliament or something similar, and I was surprised to see a much more organized, though still vocal, group. People are patiently taking turns to speak, constantly come with unexpected arguments or counter examples and eventually take polls to see what is the group’s overall opinion on the discussed topic(s). It also helped understand the process proposals go through from an initial form to the one that is eventually voted, if that is the case. I realized that it is way too easy for us to complain that things take too much time to be accepted. The reality is there are so many details that have to be taken into account and it takes many people to see them all. Everything needs to be backward compatible and it takes a lot of scrutiny and proposal iterations to reach a generally accepted form.

Overall, it was definitely a trip worth making, and I am looking forward to doing that again. I also encourage all of you that are interested in that and have the opportunity to take it.

For information about the progress in Issaquah see Herb Sutter’s Trip report: Fall ISO C++ standards meeting (Issaquah).

, , , , Hits for this post: 3076 .

C++11 added a date and time utility library called chrono, available in namespace std::chrono and header <chrono>. The problem with it is that the library is a general purpose one and therefore lacks many useful features, such as working with dates, weeks, calendars, timezones and other related features. Fortunately, a rich date and time library based on chrono has been created by Howard Hinnant and is available on github. The library is called date and is actually a collection of several small libraries:

  • date: the main library, available in header date.h, defines new date and time classes and operations with them. All the other libraries are based on this one.
  • timezones: a library for timezones, available in files tz.h/tz.cpp, based on the IANA timezone database
  • chrono_io: a library for streaming durations, available in header chrono_io.h
  • iso_week: a library that implements the ISO week calendar, available in header iso_week.h
  • julian and islamic: libraries that implement the Julian and Islamic calendars, available in headers julian.h and islamic.h

You can find all the necessary documentation on github. Here are several links:

In this article we will look at some examples for working with dates and ISO weeks. This library introduces many new types to handle various date and time representations. Among these we will look at:

  • sys_days: A count of days since std::system_clock‘s epoch. This is a time_point with a resolution of a day, and is implicitly convertible to std::system_clock::time_point, that has a much smaller resolution (millisecond or nanosecond), but not the other way around. To go the other way you must use floor().
  • year_month_day: A type that holds a day with fields for year, month (1 to 12) and day (1 to 31).
  • year_month_weekday: A type that holds a day with fields for year, month (1 to 12), a day of the week (0 to 6), and an index in the range [1, 5] that indicates the number of the week in the month.
  • year_weeknum_weekday: A type that hold a year, a weeknum (1 to 53) and a weekday (0 to 6). This can convert implicitly to and from a sys_days.

For using the library we need the following:

  • include header date.h and namespaces date and date::literals
  • for iso weeks we also need header iso_week.h and namespaces iso_week and iso_week::literals
  • NOTICE: The namespaces date::literals and iso_week::literals define types and literal operators with the same name and therefore can lead to name collisions; therefore you should only include them in the scope where you need them.

We will use the following lambda expression to print various dates to the console:

NOTICE: All the ‘today’ and related dates below are based on 2016-10-31.

Let us look at some examples:

  • create sys_days objects (including literals):

  • create year_month_day objects (including literals):

  • creating year_month_weekday literals and converting to year_month_day

  • create year_month_day values for today, yesterday and tomorrow

  • create year_month_day values for first and last day of the month

    Update: The following, as indicated by Howard Hinnant in the comments, can also be used:

  • create iso_week literals

  • get the iso week number for today

We will look at more utilities and examples in another post.

, , , , , , Hits for this post: 4461 .

C++17 was supposed to be a major update of the C++ ISO standard. After the Jacksonville meeting (29.02 – 05.03) it looks like it’s rather going to be a major disappointment. I’m not trying to downplay the things that have been voted into the C++17 standard so far, but all major features we hoped for this new version were moved out: modules, concepts, ranges, coroutines, uniform function call syntax.

Here is a brief report of the meetings, Trip report: C++ meeting at Jacksonville, and a quote of what was moved out for the next version:

Let me start enumerating the things we are not going to have in C++17:

  • Modules: They will not be in C++17, but in a separate technical specification. That is really a pity, as we will be for more years without having what I was expecting to let me get rid of the text substitution paradigm of the include directive as well as improve compilation times.
  • Concepts: They will not be integrated in C++17, but stay for now in their own technical specification. There were concerns about some issues in the TS, which I do not consider essential. Despite that there is implementation experience and even other TS depends on it, it was rejected to move concepts to the IS.
  • Ranges: This is a library solution highly depending on concepts. So, no way.
  • Coroutines: There was a very sound proposal with implementation experience. However, again this was targeted to another technical specification.

Besides that, we also will not have the half of uniform function call syntax that I thought was not controversial. To be clear, I really wanted both halves.

You can discuss on the report on reddit. The general feeling is disappointment though.

On a side note, standard C++ library in Visual Studio 2015 update 2 is C++17 feature complete (on what has been voted so far prior to the Jacksonville meeting).

, , , , , , Hits for this post: 9807 .

The Oxford meeting of the ISO C++ standards committee between 15-20 April resulted in new features beeing into the draft paper of the C++0x standard.

One of the features refer to Unicode support: a new header, called <cuchar>, was introduced. This header makes available new built-in types char16_t and char32_t, as well as new prefixes u and U to designate UTF-16 and UTF-32 encoded characters and strings.

A list of all papers submited before the Oxford meeting can be found here.

More about the results of the Oxford meeting can be found in:

, , , Hits for this post: 17747 .